
A deontic logical framework for
modelling flexibility, adaptability In service computing

Research in progress

P. Asirelli, M.H. ter Beek, S. Gnesi, A. Fantechi

ISTI-CNR, Università di Firenze

D-ASAP
Milano

17-18 February 2010

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing1 / 14

Outline

1 Aim of our research activity

2 Running example

3 Deontic logic

4 Our DHML logic

5 Static and behavioural properties of families

6 Conclusions

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing2 / 14

Aim of our research activity

To extend formal/semiformal existing notations and languages for
service computing with notions of variability through which
increased levels of flexibility and adaptability can be achieved in
software-service provision
To define a rigorous semantics of variability over behavioural
models of services that can support a number of design- and
run-time analysis techniques
To develop verification techniques that are still effective over
specifications with variability points, including situations when
variability is triggered at run time.

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing3 / 14

We have started from: Product families

In our search for a single logical framework in which to express
both static and behavioural aspects of product families:

we present a straightforward characterization of feature models by
means of deontic logics
we define a deontic extension of a behavioural logic, called
DHML, that allows to express in a single framework both static
constraints over services belonging to a software service line and
constraints over their behaviour
we give a semantic interpretation of DHML over MTSs, for which a
verification framework based on model-checking techniques could
be implemented

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing4 / 14

We have started from: Product families

In our search for a single logical framework in which to express
both static and behavioural aspects of product families:

we present a straightforward characterization of feature models by
means of deontic logics
we define a deontic extension of a behavioural logic, called
DHML, that allows to express in a single framework both static
constraints over services belonging to a software service line and
constraints over their behaviour
we give a semantic interpretation of DHML over MTSs, for which a
verification framework based on model-checking techniques could
be implemented

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing4 / 14

Running example: Coffee machine family
Feature model:

requires

Coffee1$ 1e

Coin Beverage

Coffee Machine

Ringtone

Tea Cappuccino

mandatoryoptional alternative excludes

Doubly-Labeled Modal Transition System:

- - - possible transitions
— required transitions

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing5 / 14

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are exclusive (alternative) features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing6 / 14

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are exclusive (alternative) features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing6 / 14

Static & behavioural requirements of product families

Static requirements identify the features constituting different products
and behavioural requirements the admitted sequences of operations

Static requirements of product families
The only accepted coins are the 1 euro coin (1e), exclusively for
the European products and the 1 dollar coin (1$), exclusively for
the US products (1e and 1$ are exclusive (alternative) features)
A cappuccino is only offered by European products (excludes
relation between features)

Behavioural requirements of product families
After inserting a coin, the user has to choose whether or not (s)he
wants sugar, by pressing one of two buttons, after which (s)he
may select a beverage
The machine returns to its idle state when the beverage is taken

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing6 / 14

Deontic logic

Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition
Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features
Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

⇒ Deontic logic seems to be a natural candidate for expressing
the conformance of products with respect to variability rules

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing7 / 14

Deontic logic

Deontic logic provides a natural way to formalize concepts like
violation, obligation, permission and prohibition
Deontic logic seems to be very useful to formalize product families
specifications, since they allow one to capture the notions of
optional, mandatory and alternative features
Deontic logic seems to be very useful to formalize feature
constraints such as requires and excludes.

⇒ Deontic logic seems to be a natural candidate for expressing
the conformance of products with respect to variability rules

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing7 / 14

Deontic logic - continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (¬), conjunction (∧), disjunction (∨) and implication (=⇒),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

Informal meaning of the deontic operators
O(α): action α is obligatory (required transition)
P(α) = ¬O(¬α): action α is permitted (possible transition)

if and only if its negation is not obligatory

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing8 / 14

Deontic logic - continued

A deontic logic consists of the standard operators of propositional logic,
i.e. negation (¬), conjunction (∧), disjunction (∨) and implication (=⇒),
augmented with deontic operators (O and P in our case)

The most classic deontic operators, namely it is obligatory that (O) and
it is permitted that (P) enjoy the duality property

Informal meaning of the deontic operators
O(α): action α is obligatory (required transition)
P(α) = ¬O(¬α): action α is permitted (possible transition)

if and only if its negation is not obligatory

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing8 / 14

DHML: Deontic Hennesy-Milner Logic with until
DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators à la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

Syntax of DHML
φ ::= true | p | ¬φ | φ ∧ φ′ | [α]φ | Eπ | Aπ | O(α) | P(α)

π ::= φ U φ′

Informal meaning of remaining operators (p is a proposition)
[α] φ: for all next states reachable with α, φ holds

E π: there exists a path on which π holds

A π: on each of the possible paths π holds

φ U φ′: in the current or a future state φ′ holds, while φ holds until that state

Usual abbreviations
false = ¬true, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ = ¬φ ∨ φ′, 〈α〉φ = ¬[α]¬φ,
EFφ = E (tt U φ), AGφ = ¬EF¬φ

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing9 / 14

DHML: Deontic Hennesy-Milner Logic with until
DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators à la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

Syntax of DHML
φ ::= true | p | ¬φ | φ ∧ φ′ | [α]φ | Eπ | Aπ | O(α) | P(α)

π ::= φ U φ′

Informal meaning of remaining operators (p is a proposition)
[α] φ: for all next states reachable with α, φ holds

E π: there exists a path on which π holds

A π: on each of the possible paths π holds

φ U φ′: in the current or a future state φ′ holds, while φ holds until that state

Usual abbreviations
false = ¬true, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ = ¬φ ∨ φ′, 〈α〉φ = ¬[α]¬φ,
EFφ = E (tt U φ), AGφ = ¬EF¬φ

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing9 / 14

DHML: Deontic Hennesy-Milner Logic with until
DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators à la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

Syntax of DHML
φ ::= true | p | ¬φ | φ ∧ φ′ | [α]φ | Eπ | Aπ | O(α) | P(α)

π ::= φ U φ′

Informal meaning of remaining operators (p is a proposition)
[α] φ: for all next states reachable with α, φ holds

E π: there exists a path on which π holds

A π: on each of the possible paths π holds

φ U φ′: in the current or a future state φ′ holds, while φ holds until that state

Usual abbreviations
false = ¬true, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ = ¬φ ∨ φ′, 〈α〉φ = ¬[α]¬φ,
EFφ = E (tt U φ), AGφ = ¬EF¬φ

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing9 / 14

DHML: Deontic Hennesy-Milner Logic with until
DHML is a temporal logic based on the “Hennessy-Milner logic with until” [Larsen],
augmented with the deontic O and P operators à la PDL logic [Castro & Maibaum]
and the path operators E and A from CTL [Clarke et alii]

Syntax of DHML
φ ::= true | p | ¬φ | φ ∧ φ′ | [α]φ | Eπ | Aπ | O(α) | P(α)

π ::= φ U φ′

Informal meaning of remaining operators (p is a proposition)
[α] φ: for all next states reachable with α, φ holds

E π: there exists a path on which π holds

A π: on each of the possible paths π holds

φ U φ′: in the current or a future state φ′ holds, while φ holds until that state

Usual abbreviations
false = ¬true, φ ∨ φ′ = ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ = ¬φ ∨ φ′, 〈α〉φ = ¬[α]¬φ,
EFφ = E (tt U φ), AGφ = ¬EF¬φ

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing9 / 14

DHML: Semantics with MTS as interpretation structure
→⊆ S × Act × S: transitions between states S are labelled with actions Act
transitions are either required (—) or possible (- - -)
L : S → 2AP : states are labelled with Atomic Propositions AP as well as with the
events allowed in the states (i.e. Act ⊆ AP)
P⊆S×Act denotes the actions which are permitted in a state: P(s, α) iff α∈L(s)

The satisfaction relation of DHML is defined as follows:
s |= true always holds
s |= p iff p ∈ L(s)

s |= ¬φ iff not s |= φ

s |= φ ∧ φ′ iff s |= φ and s |= φ′

s |= [α]φ iff s α−→♦ s′, for some s′ ∈ S, implies s′ |= φ

s |= Eπ iff there exists a path σ starting in state s such that σ |= π

s |= Aπ iff σ |= π for all paths σ starting in state s
s |= P(α) iff P(s, α) holds
s |= O(α) iff P(s, α) holds and ∃s′ : s α−→� s′

σ |= [φ U φ′] iff there exists a state sj , for some j ≥ 0, on the path σ such that
for all states sk , with j ≤ k , sk |= φ′ while for all states si , with 0 ≤ i < j , si |= φ

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing10 / 14

MTS of a European Coffee Machine

A product is represented by a MTS with only required transitions:

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing11 / 14

Example behavioural properties of families

Behavioural properties of families
1 It is possible to get a coffee with 1e:

[1e] EF <coffee> true

2 It is always possible to ask for sugar:

AF <sugar> true

3 It is not possible to get a beverage without inserting a coin:

AG (¬(coffee ∨ tea ∨ cappuccino) U (<1e> true ∨ <1$> true))

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing12 / 14

Example static and behavioural properties of families

Static and behavioural properties of families
1 actions 1e and 1$ are exclusive (alternative features):

((EF <1$> true) =⇒ (AG ¬P(1e))) ∧
((EF <1e> true) =⇒ (AG ¬P(1$)))

2 a cappuccino is only offered by European products (excludes
relation between features):

((EF <cappuccino> true) =⇒ (AG ¬P(1$))) ∧
((EF <1$> true) =⇒ (AG ¬P(cappuccino)))

3 a ringtone is rung whenever a cappuccino is delivered (requires
relation between features):

(EF <cappuccino> true) =⇒ (AF O(ring_a_tone))

P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing13 / 14

Conclusions and open problems

Research in Progress—what we have done so far
1 defined a deontic characterization of a feature model (static requirements over a family)
2 defined behavioural deontic logic DHML to express the behavioural variability of a family

Research in Progress—what we are working on
a model checker able to automatically verify DHML formulae over models described as
MTSs, with possible constraints expressed in DHML itself

exploit the relation between M2TSs and L2TSs to reuse the UMC model-checking engine
(on-the-fly model checker designed for the efficient verification of UCTL logic over L2TSs)

compare the expressiveness of UCTL and DHML, which might lead to enhancements to
the model-checking engine to cover DHML deontic operators

Research in Progress—what remains to be done
how to express dependencies of variation points?

how to identify properties that, proved on a family, are preserved by all its products?

how does this scale to real problems and to incremental family construction?

how to combine DHML with SOCL

what else???
P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing14 / 14

Conclusions and open problems

Research in Progress—what we have done so far
1 defined a deontic characterization of a feature model (static requirements over a family)
2 defined behavioural deontic logic DHML to express the behavioural variability of a family

Research in Progress—what we are working on
a model checker able to automatically verify DHML formulae over models described as
MTSs, with possible constraints expressed in DHML itself

exploit the relation between M2TSs and L2TSs to reuse the UMC model-checking engine
(on-the-fly model checker designed for the efficient verification of UCTL logic over L2TSs)

compare the expressiveness of UCTL and DHML, which might lead to enhancements to
the model-checking engine to cover DHML deontic operators

Research in Progress—what remains to be done
how to express dependencies of variation points?

how to identify properties that, proved on a family, are preserved by all its products?

how does this scale to real problems and to incremental family construction?

how to combine DHML with SOCL

what else???
P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing14 / 14

Conclusions and open problems

Research in Progress—what we have done so far
1 defined a deontic characterization of a feature model (static requirements over a family)
2 defined behavioural deontic logic DHML to express the behavioural variability of a family

Research in Progress—what we are working on
a model checker able to automatically verify DHML formulae over models described as
MTSs, with possible constraints expressed in DHML itself

exploit the relation between M2TSs and L2TSs to reuse the UMC model-checking engine
(on-the-fly model checker designed for the efficient verification of UCTL logic over L2TSs)

compare the expressiveness of UCTL and DHML, which might lead to enhancements to
the model-checking engine to cover DHML deontic operators

Research in Progress—what remains to be done
how to express dependencies of variation points?

how to identify properties that, proved on a family, are preserved by all its products?

how does this scale to real problems and to incremental family construction?

how to combine DHML with SOCL

what else???
P. Asirelli et al. (ISTI-CNR, Univ. Firenze) A deontic logical framework for modelling flexibility, adaptability in service computing14 / 14

	Aim of our research activity
	Running example
	Deontic logic
	Our DHML logic
	Static and behavioural properties of families
	Conclusions

